Number Theory
 James Rickards
 Canadian Summer Camp 2015

Quadratic Residue Rules

Let a be an integer, and p an odd prime. Define

$$
\left(\frac{a}{p}\right)= \begin{cases}1, & \text { if } a \text { is a quadratic residue modulo } p \\ 0, & \text { if } p \mid a \\ -1, & \text { otherwise }\end{cases}
$$

For $n=p_{1} p_{2} \cdots p_{r}$ an odd positive integer expressed as a product of distinct primes, we define

$$
\left(\frac{a}{n}\right)=\prod_{i=1}^{r}\left(\frac{a}{p_{i}}\right)
$$

Note that $\left(\frac{a}{n}\right)=1$ does not necessarily mean a is a quadratic residue modulo n, merely that it is a nonresidue modulo an even number of prime factors of n (with multiplicity).

To calculate quadratic residues, the following rules suffice (m, n are coprime odd positive integers):

$$
\begin{array}{rlrl}
\left(\frac{a}{n}\right) & =\left(\frac{b}{n}\right) \text { if } a \equiv b & (\bmod n) & \left(\frac{a b}{n}\right)=\left(\frac{a}{n}\right)\left(\frac{b}{n}\right) \\
\left(\frac{-1}{n}\right) & =\left\{\begin{array}{lll}
1 & \text { if } n \equiv 1 & (\bmod 4) \\
-1 & \text { if } n \equiv 3 & (\bmod 4)
\end{array}\right. & \left(\frac{2}{n}\right)=\left\{\begin{array}{lll}
1 & \text { if } n \equiv \pm 1 & (\bmod 8) \\
-1 & \text { if } n \equiv \pm 3 & (\bmod 8)
\end{array}\right. \\
\left(\frac{m}{n}\right) & =(-1)^{\frac{m-1}{2} \frac{n-1}{2}}\left(\frac{n}{m}\right)
\end{array}
$$

Quadratic Residue Problems

1. Let $p \equiv 1(\bmod 4)$. Prove that the sum of the quadratic residues modulo p in $[1, p-1]$ equals the sum of the non-residues in the interval. Does the same hold when $p \equiv 3(\bmod 4)$?
2. Let p be a prime. Find the value of $\sum_{a=1}^{p-1}\left(\frac{a^{2}+a}{p}\right)$.
3. Let a be a positive integer which is not a square. Prove that there are infinitely many primes p such that $\left(\frac{a}{p}\right)=-1$.
4. Prove that for all $a \in \mathbb{Z}$, the number of solutions (x, y, z) of the congruence

$$
x^{2}+y^{2}+z^{2}=2 a x y z(\bmod p)
$$

equals $\left(p+\left(\frac{-1}{p}\right)\right)^{2}$.
5. Let a, b, c be positive integers. Prove that $\frac{a^{2}+b^{2}+c^{2}}{3(a b+b c+c a)}$ is not an integer.
6. (New Zealand, 2010) Show that there are infinitely many pairs of distinct primes (p, q) such that $p \mid 2^{q-1}-1$ and $q \mid 2^{p-1}-1$.
7. An odd composite positive integer n is called a strong pseudoprime to base b for an integer $b>1$, coprime to n, if $b^{\frac{n-1}{2}} \equiv\left(\frac{b}{n}\right)(\bmod n)$. Prove that for every odd composite positive integer n, there exists a base $b>1$ coprime to n such that n is not a strong pseudoprime to base b.
8. (China TST 2003) n is a positive integer which is not a multiple of 2 or 3 , and there does not exist nonnegative integers a, b such that $\left|2^{a}-3^{b}\right|=n$. Find the minimum possible value of n.

Other Generic Number Theory Problems

1. (Romania TST 2015) Given an integer $k \geq 2$, determine the largest number of divisors the binomial coefficient $\binom{n}{k}$ may have in the range $n-k+1, \ldots, n$, as n runs through the integers greater than or equal to k.
2. (Jacob's 2008 Summer Camp handout) Define a_{n} recursively by $\sum_{d \mid n} a_{d}=2^{n}$. Prove that $n \mid a_{n}$.
3. (China TST 2008) Let $n>1$ be an integer, and $n \mid 2^{\phi(n)}+3^{\phi(n)}+\cdots+n^{\phi(n)}$. Let $p_{1}, p_{2}, \ldots, p_{k}$ be the distinct prime factors of n. Prove that $\frac{1}{p_{1}}+\frac{1}{p_{2}}+\cdots+\frac{1}{p_{k}}+\frac{1}{p_{1} p_{2} \cdots p_{k}}$ is an integer $(\phi(n)$ is Euler's totient funtion, the number of positive integers at most n which are relatively prime to n).
4. (2015 Iran MO) Let $n \geq 50$ be a natural number. Prove that we can express $n=x+y$, as a sum of two natural numbers x, y such that for every prime number p such that $p \mid x$ or $p \mid y$ we have $\sqrt{n} \geq p$. For example, for $n=94$, we have $x=80, y=14$.
5. (2008 All-Russian) Given a finite set P of primes, prove that there exists a positive integer x such that it can be written in the form $a^{p}+b^{p}$ (for positive integers a, b) for each $p \in P$, and it cannot be written in that form for each $p \notin P$.
